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Stochastic resonance in threshold systems

M. M. Alibegov*
Institute of Applied Geophysics, Moscow, Russia

~Received 19 May 1998; revised manuscript received 9 October 1998!

We consider signal processing in simple threshold systems with nonstationary additive and/or multiplicative
noise. A discrete-time process with a small periodical signal masked by noise represents an input. The systems
convert sampled input data to a nonstationary random point event flow carrying some information on an input
signal. As it is shown in our previous study@M.M. Alibegov, Astron. Lett.22, 564 ~1996!#, the Rayleigh
spectral function of a random point event train estimates a signal-to-noise ratio~SNR! at selected frequencies.
Based on these results, we compute a system response at signal frequencies as a function of threshold and input
noise intensity. The threshold systems are shown to reveal stochastic resonance~SR!, i.e., output SNR exhibits
a maximum at resonant noise intensity~intensities! and threshold~s! at rather common conditions. We show
that SR and Rayleigh spectral technique allow us to carry out numerical signal detection in data sets with noise.
@S1063-651X~99!06704-5#

PACS number~s!: 05.40.2a, 02.50.2r, 07.05.Kf
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I. INTRODUCTION

The performance of any complex system depends o
correct information exchange between its components
most natural and man-made systems, a signal carrying in
mation is often mixed with noise. Usually noise contamin
tion makes it difficult to detect signals, but in some cases
effect known as stochastic resonance~SR! improves condi-
tions for signal detection when noise and system parame
become ‘‘optimal.’’ In this effect noise comes out as a c
rier of information and plays a positive role. After the fir
publications in 1981 and 1982@1#, SR gained a certain popu
larity in physics, chemistry, biology, and technology~see
reviews@2,3#!. The signature of SR is that the output sign
to-noise ratio~SNR! has a sharp maximum at optimal inp
noise intensitysopt , and is zero if noise is absent or ve
large ~i.e., the system exhibits ‘‘a resonance response!.
Wiesenfield and Moss@3# noted a remarkable similarity o
the responses for all three main types of SR—the bista
potential model, the fire-and-reset excitable system mo
and a simple threshold model. The approximate formula
the SNR illustrates this assertion:

g}S h
s

s D 2

expS 2
s

s D , ~1!

whereg is the output SNR,h is the input signal strength,s
is the input noise intensity, ands is a constant related to th
barrier height or the threshold. Therefore, we hope t
studying one of the SR models will help in understand
other related models better.

The theory of SR in simple threshold models was dev
oped recently@4# for additive noise. The systems were fed
the input data setxA(t) consisting of the sum of the period
cal signala(t) and the Gaussian or uniform noisej:

xA~ t !5a~ t !1j. ~2!
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Processes with multiplicative noise are less popular~see,
e.g.,@5#!:

xM~ t !5a~ t !j, ~3!

wherej̄50.
Both processes can be described in terms of nonstatio

input noise. Process~2! is represented by the noise mod
with the time-dependent meanm(t), and process~3!, by the
noise model with the time-dependent variations2(t).

The purpose of this study is to develop a theory for SR
simple threshold models with discrete in time input for ar
trary distributed multiplicative and additive noise. Our a
proach uses the Rayleigh spectral technique instead of
ventional methods based on the Fourier transform.

II. RAYLEIGH POWER SPECTRA

We can describe a rather simple procedure to estim
SNR by using the results of our previous study@6#. The
Rayleigh spectral function has been defined as

R~ f !5N21F S (
j 51

N

cos~2p f t j !D 2

1S (
j 51

N

cos~2p f t j !D 2G
~4!

for a point event train$t j%, j 51,2, . . . ,N. It has been found
that if an event rater (t) can be expanded in the series~for
example, in the Fourier series!,

r ~ t !5
a0

2
1( ak cos~2p f kt1fk!, ~5!

the averaged Rayleigh spectrum for the train$t j% at the fre-
quenciesf k@Dt21 ~whereDt is a length of the train!:

~i! has peaks with the averaged amplitudes

^R~ f k!&511S ak

a0
D 2

~^N&21!'11S ak

a0
D 2

^N&, ~6!

where the angular brackets mean ensemble averaging; a
4841 ©1999 The American Physical Society
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4842 PRE 59M. M. ALIBEGOV
~ii ! the width of the averaged spectral peak isD f k
52Dt21.

Taking into account that̂N&5*Dtr (t)dt5(a0/2)Dt, Eq.
~6! can be rewritten as

^R~ f k!&'11
ak

2

2a0
Dt. ~7!

By defining SNR(f k)[g( f k)[ak
2/2a0 ~becausea0 is a

background noise rate, andak represents a signal amplitude!,
we obtain

g~ f k![
ak

2

2a0
'Dt21~^R~ f k!&21!. ~8!

It is worth noting that there are no restrictions on a sig
frequency, except evidentf k@Dt21.

III. SNR AS A FUNCTION OF THRESHOLD AND NOISE

We consider a threshold system with a discrete in ti
input $xj%5$x(t j )%, e.g., sampled measurements of ana
physical quantity. The samples assumed to be uniformly
tributed in time, i.e., a sample interval can be either const
x(tm)5x(t01mdt0),dt05const, or random, but with a con
stant mean value, i.e.,x(tm11)5x(tm1Dtm),^Dtm&5dt0
5const. In both cases the mean input data rate is cons
n05dt0

21 . A system output is a time sequence of the m
ments, $tk%, of measurements exceeding the thresholds:
x(tk)>s @see Fig. 1~a!#. Below we use the term ‘‘threshold
crossing’’ to denote these events, andtk is the threshold
crossing time. In our model, if the system thresholds
→2`, then the output event rate isr→n05const, and
hence, according to Eqs.~5! and~8!, SNR(f )50 at any fre-
quency and with arbitrary distribution ofx. If there are no
signals in the input, i.e., only a stationary noise feeds
threshold system, then the mean distance between ou
events does not change in time with any threshold, and a
r 5const.

Let input measurements have the time-dependent distr
tion density function:f „x;m(t),s(t)…, wherem and s are
parameters. We assume thatf (x;m,s)5 f (x/s;m/s,1). For
the sake of simplicity let us suppose thatf (x;m,s) is uni-
modal, i.e., it has one maximum. For example, the tim
dependent Gaussian distribution density is

f G„x;m~ t !,s~ t !…5
1

A2ps2~ t !
expH 2

@x2m~ t !#2

2s2~ t ! J . ~9!

Since the probability ofx being greater than or equal to
threshold s is Pr(x>s)5*s

` f „x;m(t),s(t)…dx, the mean
threshold crossing rate is given by@see Fig. 1~a!#

r s~ t !5n0E
s

`

f „x;m~ t !,s~ t !…dx5n0FS s2m~ t !

s~ t ! D , ~10!

wheren0 is input event occurrence rate. It is easy to see t
with a Gaussian-distributed signal, FG(z)51/2
2@1/(2A2)#er f(z), whereer f(z)5A2*2z

z f G(x;m,s)dx is
the error function.
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In our approach we assume the periodic signal is c
tained in the noise parametersm(t) and/ors(t). Our aim is
to compute the response of the threshold systems, desc
above.

Consider two cases: the additive noise,

s5s05const, m~ t !5m01h sin~2p f At1f0!; ~11!

and the multiplicative noise,

s~ t !5s01h sin~2p f Mt1f0!, m5m05const,
~12!

where h/s0!1 ~weak signal!, and Dt21! f A,M . ~To sim-
plify our reasoning we assumef A,M!n0 , keeping in mind
that actually the restrictions are weaker.! Without loss of
generality we suppose alsom050 andf050.

(a) Additive noise. The average output event rate~or
threshold crossing rate! of the threshold system with the non
stationary noise under conditions~11! is

r s~ t !5n0E
s

`

f „x;m~ t !,s0…dx5n0FS s

s0
2

h

s0
sin~2p f At ! D .

~13!

FIG. 1. ~a! Threshold model with sinusoidal signalm(t)
5h cos(2pf0tj) and the additive Gaussian noise as input.~b! The
operational diagram of the threshold system. A conversion of in
signal into an output modulated flow of point events. The dev
responds when its operational region is between pointsA andB of
the curveF(s/s0). The slope of a noise distribution function pro
vides a noise distribution function provides signal amplification.
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We can expand Eq.~13! to first order by a Taylor expan
sion:

r s~ t !'n0FF~s/s0!2
h

s0
F8~s/s0!sin~2p f At !G , ~14!

whereF8(x)5dF(x)/dx is a derivative. From this expres
sion it can be seen that the threshold system linearly conv
a weak input signal to a changing output event rate. Fig
1~b! illustrates how this conversion is carried out. Substit
ing the coefficients of the expansion from Eq.~14! in Eq. ~7!
we obtain

^R~ f A!&511n0Dt
S h

s0
D 2

F82~s/s0!

4F~s/s0!
511gA~ f A!Dt,

~15!

and the output SNR for the additive noise case reads

gA~ f A!5n0

S h

s0
D 2

F82~s/s0!

4F~s/s0!
5n0KA~s,s0 , f A!, ~16!

whereKA(s,s0 , f A) is the normalized dimensionless syste
response at a signal frequency. This quantity can be rega
also as a SNR per unit input rate. Equations~4!, ~8!, and~16!
show thatKA(s,s0 , f A) is easily estimated both theoretical
and experimentally. To examine the correctness of
theory we have simulated the performance of the system
follows: ~1! The consequence of Gaussian numb
$x(t j )%,t j51, . . . ,N0 53000 has been generated. The nu
bers were distributed according to Eq.~9!, where the signal
frequencyf A50.04 and signal amplitudeh50.01. ~2! The
numbers exceeding some threshold values have been se
lected; their moments of occurrence formed the point ev
train $tk%s ,k51,2, . . . ,N. ~3! The Rayleigh spectrum~4! of
this train was computed in the range near the signal
quency. The strongest peak in this spectral range was
sumed to estimate the experimental SNRA ~or KA) for given
threshold and noise. Peak values were averaged over
trials at each pair ofs ands0 . In Fig. 2 the results of simu
lations ~symbols! are compared with the theoretical comp
tations~solid lines!.

(b) Multiplicative noise.The output averaged event ra
~or threshold crossing rate! of the thresholds system with th
nonstationary Gaussian noise~9! under conditions~12! is
given by

r s~ t !5n0F„s/s~ t !…5n0FS s

s01h sin~2p f 0t ! D
'n0FF~s/s0!2

sh

s0
2 F8~s/s0!sin~2p f 0t !G . ~17!

This equation shows that the signal is transformed to
output rate as above in the additive noise case~11!. We again
use Eqs.~8! and ~17! to obtain SNR:
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gM~ f M !5n0

S s

s0
D 2S h

s0
D 2

F82~s/s0!

4F~s/s0!
5n0KM~s,s0 , f M !.

~18!

The normalized system responseKM(s,s0 , f M) differs
from KA(s,s0 , f A) only by the factor (s/s0)2. We again
have simulated the system performance for the multiplica
case as described above. The results of simulations a
with theoretical curves are presented in Fig. 3.

Equations~16! and~18! can be rewritten in the following
way:

gA~ f A!5n0S h

s0
D 2

Q~s/s0!, ~19!

gM~ f M !5n0S s

s0
D 2S h

s0
D 2

Q~s/s0!, ~20!

where

FIG. 2. Threshold model responses for additive noise with
ditive Gaussian noise input at the signal frequencyf A . ~a! Normal-
ized SNR~i.e., KA) vs thresholds/h for different noise strength
s0 /h; theory ~solid lines!: ~1! s0 /h52, ~2! s0 /h53, ~3! s0 /h
54, ~4! s0 /h56, ~5! s0 /h58. ~b! Normalized SNR~i.e., KA) vs
input noise strengths/h for different thresholdss/h; theory~solid
lines!: ~1! s/h54, ~2! s/h56, ~3! s/h58, ~4! s/h510. The sym-
bols represent averaged maximal values of spectral peaks nea
nal frequencyf A . Statistical errors are within 30%.
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Q~s/s0!5
F82~s/s0!

4F~s/s0!
. ~21!

Q(x/s0) can be treated as the generalized response of
threshold system. Using these equations we can pred
system’s response for any noise distribution. Figure 4 rep
ducesQ(x/s0) according to Eq.~21! for the Gaussian~9!
and uniform input distributions. Equations~19!–~21! show
that the system responsesKA,M(s,s0 , f A,M) together with the
function Q(x/s0) become zero, at arbitrary noise distrib
tion, when s/s0→6`. This implies that SNR’s expos
peaks at intermediate values of thresholds-to-noise ra
Figure 1~b! shows that the resonance arises with a
S-shaped noise distribution function, such as the Gaussia
uniform ones, due to its nonlinearity. The system respo
grows when a device operates in the steep section of
curve, and diminishes elsewhere. The device operationa
gion depends on a threshold. Therefore the system resp
is small at low thresholds (s→2`). In the regionA-B it
grows to a maximum, and then decreases as the thres
keeps rising. This type of resonance has been describe
Jang @4#. It happens when the noise is kept constant. T
conventional SR arises in the systems with a fixed thresh
Figure 1~b! illustrates that at a strong noise (s0→`) the
slope of the curve becomes small as well as the system
sponse. The response is also absent when there is no no

FIG. 3. Normalized~dimensionless! resonance characteristic
KM(s,s, f M), for threshold model with multiplicative Gaussia
noise input at the signal frequencyf M . ~a! Normalized SNR~i.e.,
KM) vs thresholds/h for different noise strengths0 /h; theory
~solid lines!: ~1! s0 /h52, ~2! s0 /h53, ~3! s0 /h54, ~4! s0 /h
56, ~5! s0 /h58. ~b! Normalized SNR~i.e., KM) vs input noise
strengths/h for different thresholdss/h; theory ~solid lines!: ~1!
s/h54, ~2! s/h56, ~3! s/h58, ~4! s/h510. The symbols repre
sent averaged maximal values of spectral peaks near signal
quencyf 0 . Statistical error is within 30%.
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feed the device~i.e., s0→0). F(s/s0) changes into the step
function, and the output SNR→0 unlesss50. The response
grows in a relatively short intermediate interval of the no
intensity. Usually we can find the optimal values ofs ands0
by solving the equations

]

]s0
KA,M~s,s0!50,

]

]s
KA,M~s,s0!50. ~22!

But sometimes it is easier to estimate these values num
cally, using Eqs.~19!–~21!. The simple analysis gives a gen
eral solution of Eq.~22!: the optimal thresholds and fixe
noise intensities are connected by the relationsopt5ks0 ,
where k is a constant, depending on the noise distribut
and mode~additive or multiplicative!. The relation between
optimal noise intensities and fixed thresholds is not
simple.

Reasonings presented above remain true when input n
is colored and/or continuous. In that case a series of lo
maxima can be selected as a system input and the func
f (x;m,s) describes their probability distribution density, an
our analysis is repeated. The parametern0 is defined as a
mean number of local peaks in a unit of time at extrem
low threshold values:n05r s→2` . Of course, it must be con
stant in the time intervalDt.

(c) Note. We have used equationFG,U8 '@FG,U(s/s0

1h/s0)2FG,U(s/s02h/s0)#/(2h/s0) instead of the for-
mally correct equationFG,U8 52 f G,U(s/s0,0,1) in the com-
putation of the theoretical characteristics. IndexesG and U
mean the Gaussian or uniform distributions. This approxim
tion occurred to be more accurate at relatively large sig
amplitudes.

IV. PERIODICAL SIGNAL DETECTION

Jung@4# has shown that there are optimal values for t
threshold that yield optimal performance in the thresh

re-

FIG. 4. Generalized responsesQ vs s/s0 for the Gaussian and
uniform input noise distributions. Theoretical predictions accord
to Eq. ~21! are shown with the solid lines. The filled circles a
averaged experimental Gaussian data derived from those in Fi
and 3. Empty circles denote results of the uniform noise simu
tions. ~Multiplicative case points nears50 were missed.!
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systems with the additive Gaussian input noise. We gene
ize this result to the threshold systems with multiplicati
noise input and a wide range of noise distributions. Thus
system response SNR vss with a maximum seems to be th
signature of SR as well as conventional resonance cu
SNR vss0 .

Our analysis shows that the output SNR exhibits a sh
maximum at optimal threshold-to-noise ratios, when
noise is kept constant. For example, the system with
Gaussian noise imposes the resonance, whensAopt
'0.62s0 , andsMopt'1.64s0 , for the additive and multipli-
cative cases, respectively. A sharp maximum of SNR(s) al-
lows one to use SR in optimization of the digital signal pr
cessing.

To demonstrate the SR and the Rayleigh spectral te
nique in a signal detection, a long consequence of rand
numbers has been generated. The numbers were distrib
according to Eq.~9! with the time-dependent paramete
m(t)50.2 sin(2pfAt) ands(t)5110.2 sin(2pfMt), whereh
50.2, f A50.04, andf M50.05. The consequence simulated
process with sinusoidal signals masked by the additive
multiplicative Gaussian noise.

The first step of the signal detection is to find reliab
spectral peaks and then to estimate the system response@Fig.
5~a!#. There are two spectral peaks in our example, and
responses are estimated at the frequenciesf A and f M . Their
position and shape determine the noise modes~additive and
multiplicative!, distributions~Gaussian!, optimal thresholds
(sAopt , and sMopt), signal amplitudes (h), and noise stan-
dard deviation (s51.61sAopt50.62sMopt).

The second step is the analysis of Rayleigh spectra a
resonant thresholds@Fig. 5~b!#. It makes more precise a
estimation of signal frequencies and amplitudes, and ev
ates phases of signals@6#.

Of course, we have described here a highly simplifi
procedure of signal detection. This approach sometimes
an advantage over conventional methods. For example
signal at f M could not be detected by the straightforwa
Fourier transform. Our method has shown good results in
detection of periodicities in solar activity indexes~e.g.,@7#!.

V. CONCLUSION

We have presented the theory of SR in the simp
threshold systems with a discrete-time input, using the R
leigh spectral technique. The system responses have
estimated when a weak periodical and noise-contamin
signal feeds the system at additive and multiplicative no
modes. We have studied in detail Gaussian and~in brief!
uniform noise cases, and we expect good agreement
theory and experiment in the case of arbitrary noise distri
tion.

The system responses were shown to reveal peaks a
F.
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timal values of noise intensity and threshold in a wide ran
of noise distributions. These values can be easily estima
Thus, SR seems to be a rather common phenomeno
threshold devices.

The optimal parameters of the systems do not depend
signal strength and frequency. Since the aperiodic signal
be treated as a process with a very large period, the aperi
SR ~or APS!, introduced and developed recently@8#, can
apparently be described in terms of SNR as well as in te
of cross-correlation indexesC0 and C1 . The threshold sys-
tem responses can be predicted from the known noise pa
eters, and vise versa.

Our results reveal the signal processing capabilities of
systems studied here. The proposed techniques~SR 1 the
Rayleigh spectral method! could be used for estimating
threshold model input parameters, such as signal frequen
phases, amplitudes, noise intensity, and distribution. It co
also be useful for the design of threshold devices, commu
cation, and other applications.

FIG. 5. Signal detection from the simulated data set.~a! The
averaged resonance responses at signal frequencies:~1! f A , ~2! f M .
Solid lines are theoretical.~b! Averaged spectra of SNR at resona
thresholds~experimental!. Statistical errors are within 30%.
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