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Stochastic resonance in threshold systems
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We consider signal processing in simple threshold systems with nonstationary additive and/or multiplicative
noise. A discrete-time process with a small periodical signal masked by noise represents an input. The systems
convert sampled input data to a nonstationary random point event flow carrying some information on an input
signal. As it is shown in our previous studi.M. Alibegov, Astron. Lett.22, 564 (1996], the Rayleigh
spectral function of a random point event train estimates a signal-to-nois€3ati)) at selected frequencies.

Based on these results, we compute a system response at signal frequencies as a function of threshold and input
noise intensity. The threshold systems are shown to reveal stochastic res@Rnde., output SNR exhibits

a maximum at resonant noise intensfigtensities and threshol@) at rather common conditions. We show

that SR and Rayleigh spectral technique allow us to carry out numerical signal detection in data sets with noise.
[S1063-651%9906704-5

PACS numbd(s): 05.40—a, 02.50-r, 07.05.Kf

I. INTRODUCTION Processes with multiplicative noise are less popuitae,
e.g.,[5)]):
The performance of any complex system depends on a
correct information exchange between its components. In Xu(t)=a(t)¢, ©)

most natural and man-made systems, a signal carrying infor- —
mation is often mixed with noise. Usually noise contamina-Where&=0. o ,

tion makes it difficult to detect signals, but in some cases the BOth processes can be described in terms of nonstationary
effect known as stochastic resonar(&) improves condi- mput noise. Proces€) is represented by the noise model
tions for signal detection when noise and system parameteMith the time-dependent mean(t), and process3), by the
become “optimal.” In this effect noise comes out as a car-N0ise model with the time-dependent variatiof(t). .
rier of information and plays a positive role. After the first The purpose of this stud_y Is to deve!op_a th_eory for SR in
publications in 1981 and 19§2], SR gained a certain popu- S|mple_thr_eshold mod_elg Wl_th discrete |r_1_t|me |r_1put for arbi-
larity in physics, chemistry, biology, and technologsee trary distributed mult|pl_|cat|ve and add|t|\_/e noise. Our ap-
reviews[2,3]). The signature of SR is that the output signal- Proach uses the Rayleigh spectral technique instead of con-
to-noise ratilSNR) has a sharp maximum at optimal input Ventional methods based on the Fourier transform.

noise intensityo,,;, and is zero if noise is absent or very

large (i.e., the system exhibits “a resonance response” Il. RAYLEIGH POWER SPECTRA

Wiesenfield and Mos§3] noted a remarkable similarity of

| 4 wW i h impl i
the responses for all three main types of SR—the b|stabIE e can describe a rather simple procedure to estimate

NR by using the results of our previous stufBf. The

potential model, the fire-and-reset excitable system mode ayleigh spectral function has been defined as

and a simple threshold model. The approximate formula for

the SNR illustrates this assertion: 2 N

N 2
R(f)=N"1 (E cog2wft)) | + > cos{27-rftj)) }
2 s & &
ex“(_g)’ @ (4)

for a point event traift;}, j=1,2,... N. It has been found

wherey is the output SNRy is the input signal strengtl;  that if an event rate(t) can be expanded in the serider
is the input noise intensity, arglis a constant related to the example, in the Fourier series

barrier height or the threshold. Therefore, we hope that

studying one of the SR models will help in understanding ag

other related models better. r=—-+ > acog2mfit+ ¢y, (5
The theory of SR in simple threshold models was devel-

oped recently4] for additive noise. The systems were fed by the averaged Rayleigh spectrum for the tritip) at the fre-

the input data seta(t) consisting of the sum of the periodi- quenciesf,>At™! (whereAt is a length of the train

S
| p—
Y 75

cal signala(t) and the Gaussian or uniform noige (i) has peaks with the averaged amplitudes
Xa(t)=a(t) +&. ) a|? a|?
g (RU)=1+| | (N)=D)~1+[ =] (N),  (®)
0 3o
*Electronic address: alibeg@glasnet.ru where the angular brackets mean ensemble averaging; and
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(i) the width of the averaged spectral peak As,
=2At7L, x(t) x(t,)
Taking into account thafN) = [ ,;r (t)dt=(a,/2)At, Eq. /
(6) can be rewritten as

(a)

Threshold crossings

ay
(R(f))=1+ Z-At. 7

By defining SNR(k)Ey(fk)Ea§/2aO (becausea, is a s X
background noise rate, alag represents a signal amplitude [
we obtain of B B I

e
l
.
e

-—o

(f )za—§~m*1( R(f))—1 8
YTk 2a0 < ( k)) ) () . (b)

S
>

It is worth noting that there are no restrictions on a signal
frequency, except eviderfit>At "1,

Ill. SNR AS A FUNCTION OF THRESHOLD AND NOISE

We consider a threshold system with a discrete in time
input {x;}={x(t;)}, e.g., sampled measurements of analog
physical quantity. The samples assumed to be uniformly dis-
tributed in time, i.e., a sample interval can be either constant:
X(tm) =X(tg+méty), sty=const, or random, but with a con-
stant mean value, i.eX(tm:1)=X(tm+Aty),(Aty,)= Sty S
=const. In both cases the mean input data rate is constant: <€
Vo= 5t51. A system output is a time sequence of the mo-

ments, {t,}, of _measurements exceeding the threshsld FIG. 1. (@ Threshold model with sinusoidal signak(t)
x(t)=s [see Fig. 1a)]. Below we use the term “threshold _ 7 cos(2rfyt;) and the additive Gaussian noise as ingb). The
crossing” to denote these events, andis the threshold  qperational diagram of the threshold system. A conversion of input
crossing time. In our model, if the system threshald sjgnal into an output modulated flow of point events. The device
— —o, then the output event rate is—vo=const, and responds when its operational region is between pdirasd B of
hence, according to Eqé) and(8), SNR(f)=0 at any fre-  the curveF(s/o,). The slope of a noise distribution function pro-
guency and with arbitrary distribution of. If there are no vides a noise distribution function provides signal amplification.
signals in the input, i.e., only a stationary noise feeds the

threshold system, then the mean distance between output In our approach we assume the periodic signal is con-
events does not change in time with any threshold, and agaiained in the noise parameteugt) and/oro(t). Our aim is

Mean threshold crossing rate

P,

Ho ; Threshold, s
!

v Imput W>
signal <G

{
i

r =const. to compute the response of the threshold systems, described
Let input measurements have the time-dependent distribuabove.

tion density function:f(x;w(t),o(t)), whereu and o are Consider two cases: the additive noise,

parameters. We assume thiék; u,o0)=f(x/o;n/o,1). For

the sake of simplicity let us suppose tHdk; u,o) is uni- o=0y=const, u(t)=ue+nsin2mfst+do); (11)

modal, i.e., it has one maximum. For example, the time-

dependent Gaussian distribution density is and the multiplicative noise,

[X—M(t)]Z] © o(t)y=ogt+ ysin2mfyt+ ¢dg), wp=pg=const,
(12

1
fo;u(t),o(t)= mexp{ 201

Since the probability ok being greater than or equal to a where n/oy,<1 (weak signgl, and At 1<f, . (To sim-
threshold s is Prx=s)=[{f(x;u(t),o(t))dx, the mean plify our reasoning we assunig y<vq, keeping in mind
threshold crossing rate is given bsee Fig. 13)] that actually the restrictions are weakewithout loss of

generality we suppose algg,=0 and ¢o=0.
o s—u(t) (a) Additive noise The average output event rafer
rs(t)= VoL fOx;u(t),o(t))dx= vOF(W>, (100 threshold crossing ratef the threshold system with the non-
stationary noise under conditio¥l) is
wherewy is input event occurrence rate. It is easy to see that
with a  Gaussian-distributed  signal, Fg(2)=1/2 _ e _ S 7 _.
C[1(242)]erf(2), whereerf(2)=\2J2 fo(x mo)dxis S0 ”OL FOG (D, o)dx=woF| = = SiN2mfal) |.
the error function. (13
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We can expand Eq13) to first order by a Taylor expan-

sion:

F(t)~ vy F(s/ao)—UlF’(s/UO)sin(waAt) (14 0021
0
= N
whereF’(x) =dF(x)/dx is a derivative. From this expres- S B
sion it can be seen that the threshold system linearly converts = = i
. ; ; : — 001}
a weak input signal to a changing output event rate. Figure M( i
1(b) illustrates how this conversion is carried out. Substitut- i
ing the coefficients of the expansion from E4) in Eq. (7) i
we obtain 5
0.00
n 2 5
(0_—) FIZ(S/(To)
0
<R(fA)>_1+V0AtW_1+ ya(fa)At, -
19 0.008 |-
and the output SNR for the additive noise case reads -3 :
o) |
72 3;/ 0.004}—
. F'2(sl o) e »
0
YA(fA)—VOT/UO)—VOKA(S,%JA), (16) B
0.000

whereK 4(s,0q,fa) is the normalized dimensionless system 0

response at a signal frequency. This quantity can be regarded
also as a SNR per unit input rate. Equatiofs (8), and(16)

show thatk x(s, 0o, f4) is easily estimated both theoretically £ 2. Threshold model responses for additive noise with ad-
and experimentally. To examine the correctness of OUgjtive Gaussian noise input at the signal frequeficy (8) Normal-
theory we have simulated the performance of the system aseq SNR(i.e., K,) vs thresholds/» for different noise strength
follows: (1) The consequence of Gaussian numbersy/y; theory (solid lines: (1) oo/n=2, (2) oo/ n=3, (3) oo/ 7
{x(t)}t;=1,... No =3000 has been generated. The num-=4, (4) o,/ 7=86, (5) o/ 7=8. (b) Normalized SNR(.e.,K,) vs

bers were distributed according to H§), where the signal input noise strengtla/  for different thresholds/ ; theory(solid
frequencyf,=0.04 and signal amplitude=0.01.(2) The lines: (1) s/p=4, (2) s/»=6, (3) s/»=8, (4) s/p=10. The sym-
numbers exceeding some threshold vatubave been se- bols represent averaged maximal values of spectral peaks near sig-
lected; their moments of occurrence formed the point evental frequencyf 5. Statistical errors are within 30%.

train {t,}s,k=1,2, ... N. (3) The Rayleigh spectrurt¥) of

this train was computed in the range near the signal fre- s\?[ n\? )
quency. The strongest peak in this spectral range was as- pony B e F'“(slao)
sumed to estimate the experimental SNRBr K 5) for given ym(fm) =70 0 0 =voKu(S,09,fm).

threshold and noise. Peak values were averaged over 100 4F(sloo)

trials at each pair o and . In Fig. 2 the results of simu-
lations (symbolg are compared with the theoretical compu-
tations(solid lines.

(b) Multiplicative noise.The output averaged event rate
(or threshold crossing ratef the thresholds system with the
nonstationary Gaussian noi$@) under conditions(12) is

(18

The normalized system respongg,(s,oq,fy) differs
from Ka(s,00.,fa) only by the factor §/0,)%. We again
have simulated the system performance for the multiplicative
case as described above. The results of simulations along
with theoretical curves are presented in Fig. 3.

iven b
g y Equations(16) and(18) can be rewritten in the following
S way:
r{(t)=voF(slo(t))=voF 0'0+7]Sin(27'rfot)) o2
S 7A(fA):VO(0__O) Q(slag), (19
~ ol F(sl7g) ——2F' (slog)sin2fot) | (17)
%o s 2 2
7
e 212 s,
This equation shows that the signal is transformed to the vutu) =0 0o/ \ 0o Qsloo) 20

output rate as above in the additive noise ddd¢ We again
use Eqs(8) and(17) to obtain SNR: where
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;:z 0.006 = distribution
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X 0.002 0.2

" | Gaussian
0.000 0.1 distribution
0.0
0.015 -2.0 -1.0 0.0 1.0 2.0 3.0
’ slo,
S FIG. 4. Generalized respons€svs s/ o for the Gaussian and
\; 0.010 uniform input noise distributions. Theoretical predictions according
© to Eq. (21) are shown with the solid lines. The filled circles are
2 0.005 averaged experimental Gaussian data derived from those in Figs. 2
ME : and 3. Empty circles denote results of the uniform noise simula-
tions. (Multiplicative case points nea=0 were missedl.
0.000

feed the devicéi.e., 0p—0). F(s/og) changes into the step
function, and the output SNRO unlesss=0. The response
grows in a relatively short intermediate interval of the noise

FIG. 3. Normalized(dimensionlessresonance characteristics, intensity. Usually we can find the optimal valuessaind o,
Kwm(s,o,fw), for threshold model with multiplicative Gaussian py solving the equations

noise input at the signal frequendy, . (a) Normalized SNR(.e.,
Km) Vs thresholds/ » for different noise strengthry/#n; theory J
(solid lineg: (1) oo/n=2, (2) o9/ =3, (3) oo/n=4, (4) ooy —Kam(s,00)=0,

=6, (5 g¢/7=8. (b) Normalized SNR(.e., Ky;) vs input noise doo

strengtho/ 7 for different thresholds/ 7; theory (solid lines: (1)

sin=4,(2) sIn=6, (3) s/p=8, (4) s/p=10. The symbols repre- iK (S,00)=0 (22)
sent averaged maximal values of spectral peaks near signal fre- gs AMI>T0 '

quencyf,. Statistical error is within 30%.
But sometimes it is easier to estimate these values numeri-
F'2(sl o) cally, usin_g Eqs(19)—(21). The simple analysis gives a gen-
Q(slag)= AF(Slog) (21)  eral solution of Eq.(22): the optimal thresholds and fixed
0 noise intensities are connected by the relatsgp,=koy,
wherek is a constant, depending on the noise distribution
Q(x/og) can be treated as the generalized response of thend mode(additive or multiplicative. The relation between
threshold system. Using these equations we can predict @ptimal noise intensities and fixed thresholds is not so
system’s response for any noise distribution. Figure 4 reprosimple.
ducesQ(x/oy) according to Eq(21) for the Gaussiar{9) Reasonings presented above remain true when input noise
and uniform input distributions. Equatior{$9)—(21) show is colored and/or continuous. In that case a series of local
that the system respons€g v (S,00,fa m) together with the maxima can be selected as a system input and the function
function Q(x/a() become zero, at arbitrary noise distribu- f(x;u,o) describes their probability distribution density, and
tion, when s/ogy— *=. This implies that SNR’s expose our analysis is repeated. The parametgris defined as a
peaks at intermediate values of thresholds-to-noise ratiosnean number of local peaks in a unit of time at extremely
Figure Xb) shows that the resonance arises with anylow threshold valuesiyy=r .. Of course, it must be con-
S-shaped noise distribution function, such as the Gaussian @tant in the time intervaht.
uniform ones, due to its nonlinearity. The system response (c) Note. We have used equatiofr; ,~[Fg y(s/og
grows when a device operates in the steep section of the /o) —Fg ((s/og— n/0p)]/(27/0y) instead of the for-
curve, and diminishes elsewhere. The device operational renally correct equatiofr § = —fg y(s/0,0,1) in the com-
gion depends on a threshold. Therefore the system responggtation of the theoretical characteristics. Inde@snd U
is small at low thresholdss(~—). In the regionA-B it mean the Gaussian or uniform distributions. This approxima-

grows to a maximum, and then decreases as the threshoign occurred to be more accurate at relatively large signal
keeps rising. This type of resonance has been described Rynplitudes.

Jang[4]. It happens when the noise is kept constant. The
conventional SR arises in the systems with a fixed threshold.
Figure Xb) illustrates that at a strong noiser{—«) the

slope of the curve becomes small as well as the system re- Jung[4] has shown that there are optimal values for the
sponse. The response is also absent when there is no noisettioeshold that yield optimal performance in the threshold

IV. PERIODICAL SIGNAL DETECTION
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systems with the additive Gaussian input noise. We general- 0.008 | |
+ fa (@

ize this result to the threshold systems with multiplicative
noise input and a wide range of noise distributions. Thus the —
system response SNR gswith a maximum seems to be the i- 0.006
signature of SR as well as conventional resonance curve ~>
SNR VSoy. bc 0.004
Our analysis shows that the output SNR exhibits a sharp :t
maximum at optimal threshold-to-noise ratios, when the =
noise is kept constant. For example, the system with the M{ 0.002
Gaussian noise imposes the resonance, wheggy,
~0.627, andsyqp~1.640¢, for the additive and multipli-

|||IIII|II|||||I|||
wrad daa sl aa a4

cative cases, respectively. A sharp maximum of S§Ry- 0.000
lows one to use SR in optimization of the digital signal pro-
cessing. - - - -

To demonstrate the SR and the Rayleigh spectral tech- 3 fa fw (5 3
nique in a signal detection, a long consequence of random 0.005 3
numbers has been generated. The numbers were distributed : 3
according to Eq.(9) with the time-dependent parameters <o 0004 F E
u(t)=0.2sin(2rf5t) and o(t) =1+ 0.2 sin(2rf\t), wheren ‘_Zf: . E
=0.2,f,=0.04, andf,,=0.05. The consequence simulateda  ; %03 F 3
process with sinusoidal signals masked by the additive and & F u
multiplicative Gaussian noise. Q,‘ 0.002 3 E

The first step of the signal detection is to find reliable =~ 0001 B E
spectral peaks and then to estimate the system respigse E e
5(a)]. There are two spectral peaks in our example, and two 0.000 f g —. N
responses are estimated at the frequenfciesnd fy, . Their 0.035 0.040 0.045 0.050 0.055
position and shape determine the noise madeslitive and Frequency, f (arb. units)
multiplicative), distributions(Gaussiaj optimal thresholds ’ ’

(Saopt, @andsyopy), signal amplitudes %), and noise stan- FIG. 5. Signal detection from the simulated data $at.The
dard deviation §=1.615pp=0.65)0p9) - averaged resonance responses at signal frequettids;, (2) fy .

The second step is the analysis of Rayleigh spectra at theolid lines are theoreticalb) Averaged spectra of SNR at resonant
resonant thresholdfFig. 5(b)]. It makes more precise an thresholdsexperimentgl Statistical errors are within 30%.
estimation of signal frequencies and amplitudes, and evalu-
ates phases of signdl§].

Of course, we have described here a highly simplifieotima| values of noise intensity and threshold in a wide range
procedure Of Signa| detection_ Th|s approach Sometimes hég noise distributions. These values can be eaSin estimate(.j.
an advantage over conventional methods. For example, thEhUS, SR seems to be a rather common phenomenon in
signal atf,, could not be detected by the straightforward threshold devices.

Fourier transform. Our method has shown good results in the The optimal parameters of the systems do not depend on a

detection of periodicities in solar activity indexésg.,[7]).  Signal strength and frequency. Since the aperiodic signal can
be treated as a process with a very large period, the aperiodic

V. CONCLUSION SR (or APS, introdgced_and developed recen{l§], can
apparently be described in terms of SNR as well as in terms
We have presented the theory of SR in the simplesbf cross-correlation indexeS, andC;. The threshold sys-
threshold systems with a discrete-time input, using the Raytem responses can be predicted from the known noise param-
leigh spectral technique. The system responses have beeters, and vise versa.
estimated when a weak periodical and noise-contaminated Our results reveal the signal processing capabilities of the
signal feeds the system at additive and multiplicative noiseystems studied here. The proposed technid&&s+ the
modes. We have studied in detail Gaussian &ndbrief) Rayleigh spectral methgdcould be used for estimating
uniform noise cases, and we expect good agreement witthreshold model input parameters, such as signal frequencies,
theory and experiment in the case of arbitrary noise distribuphases, amplitudes, noise intensity, and distribution. It could
tion. also be useful for the design of threshold devices, communi-
The system responses were shown to reveal peaks at opation, and other applications.
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